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Abstract

A numerical study of natural convection in cavity filled with air has been carried out under large temperature gradient. The flows
under study are generated by a heated solid body located close to the bottom wall in a rectangular cavity with cold vertical walls
and insulated horizontal walls. They have been investigated by direct simulations using a two-dimensional finite volume numerical code
solving the time-dependent Navier–Stokes equations under the low Mach number approximation. This model permits to take into
account large temperature variations unlike the classical Boussinesq model which is valid only for small temperature differences. We were
particularly interested in the first transitions which occur when the Rayleigh number is increased for flows in cavities of aspect ratio
A = 1,2,4. Starting from a steady state, the results obtained for A = 1 and A = 4 show that the first transition occurs through a super-
critical Hopf bifurcation. The induced disturbances determined for weakly supercritical regimes indicate the existence of two instability
types driven by different physical mechanisms: shear and buoyancy-driven instabilities, according to whether the flow develops in a
square or in a tall cavity. For A = 2, the flow undergoes a pitchfork bifurcation leading to an asymmetric steady state which in turn
becomes periodic via a supercritical Hopf bifurcation point. In both cases, the flow is found to be strongly deflected towards one vertical
wall and instabilities are found to be of shear layers type.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The study of buoyant plumes induced by temperature
differences between a fluid and its surroundings is of impor-
tance not only to scientific understanding but also to
engineering practice. Mechanisms of buoyancy-induced
convection become more complex when there are interac-
tions of the flow with solid boundaries. This paper deals
with the analysis of a transitional plane plume originating
from a square obstacle immersed inside a rectangular cav-
ity. Three aspect ratios have been considered in this study.
It should be noticed that all the configurations present a
reflection symmetry and that the bifurcations which occur
when the Rayleigh number increases will be analyzed
through this symmetry breaking.
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Laminar and turbulent plane plumes arising from hori-
zontal line sources in infinite or semi-infinite medium have
drawn the attention of many investigations in the past:
from classical self-similar solutions [1–3] to linear stability
analysis [4–7] for earlier theoretical studies, added to sev-
eral experimental investigations carried out during the
same period and relating to plume oscillations [4,6,8–11].

Many observations of laminar plume flows have indi-
cated a regular swaying motion in a plane perpendicular
to the axis of the source [10,11]. Following these observa-
tions, the stability problem of a freely rising plume was first
studied by Pera and Gebhart [4] using the linear stability
theory based on quasi-parallel flows. This theory predicts
the amplification characteristics of small periodic distur-
bances as a function of frequency b and Grashof number
Grx. The authors obtained a neutral stability curve for
Pr = 0.7 but failed to find a critical Grashof number. They
also made experimental observations using a Mach–Zender
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Nomenclature

Greek symbols

� = DT/2T0 normalized temperature difference
j thermal conductivity
l dynamic viscosity
p reduced pressure
q density
cp, cv specific heat capacities
a ¼ j

qcp
thermal diffusivity

Subscripts and superscripts
0 values at temperature difference

* Adams–Bashforth extrapolation
h hot
c cold
A = H/L aspect ratio
H height

L width
L0 reference length
P mean thermodynamic pressure
P 0 ¼ q0V 2

0 reference pressure

Pr ¼ l0

q0a0
Prandtl number

Ra ¼ 2q0egL3
0=l0a0 Rayleigh number

t0 = L0/V0 reference time
T non-dimensional temperature
T0 = (Th + Tc)/2 reference temperature

V 0 ¼ l0

q0L0

ffiffiffiffiffiffi
Ra
p

reference velocity

u horizontal component of the non-dimensional
velocity

v vertical component of the non-dimensional
velocity

3600 M. Bouafia, O. Daube / International Journal of Heat and Mass Transfer 50 (2007) 3599–3615
interferometer to observe the disturbances as they were
convected downstream. The experimental results show that
sufficiently high frequency disturbances are stable as they
are convected downstream. Later, calculations of the same
problem have been carried out by Haaland and Sparrow [5]
taking into account non-parallel and higher-order effects of
the base flow in the linear stability analysis. The authors
obtained a lower branch of neutral curve and then a critical
Grashof number. Their results show that the unstable
region is smaller than that obtained from the quasi-parallel
theory. The stability problem of non-parallel flows were
also investigated by Wakitani [7] using the method of mul-
tiple scales. This method considers that the various distur-
bance quantities have different amplification rates. Their
results relating to the amplification rate of disturbances
within unstable regions show a substantial deviation from
that predicted by the quasi-parallel theory.

The determination of the critical Grashof number corre-
sponding to the transition from laminar to turbulent in a
freely rising plume has been investigated experimentally
by Bill and co-workers [8,10] among others. The authors
defined a local Grashof number based on the vertical dis-
tance along the plume and the heat rate input. The onset
of transition considered as the initial appearance of the
turbulent bursts, occurred at a Grashof number of
Grx = 5 · 108 according to [10] and at Grx = 11.2 · 108

for [8]. The later attributed the discrepancy to the weak
precision of the interferometer for small local disturbances.
Moreover, several studies have examined the interaction
between buoyant plumes and neighbouring vertical sur-
faces and have observed a deflection of plume towards
the surface [12,13]. This Coanda effect is seen to be a con-
sequence of constrained entrainment of the fluid feeding
the plume due to the presence of the vertical surface.

Although there are many studies in infinite or semi-infi-
nite medium, few information is available about thermal
plumes in confined geometry where influence of boundaries
and initial conditions must be taken into account. The
behaviour of plumes in confined geometry can be simulated
numerically using direct numerical simulations (DNS)
which allows for parametric studies on such flows for engi-
neering purposes. The few numerical studies found in the
literature consider flows under the Boussinesq approxima-
tion. Among them, one can notice works carried out by
Desrayaud and Lauriat [14] where considerable research
efforts have been devoted to unsteady thermal plumes in
many geometric configurations. The authors considered
two-dimensional flows generated by a horizontal line
source inside a rectangular cavity with adiabatic sidewalls
and cold top and bottom walls. By varying the depth of
immersion, the aspect ratio and the Rayleigh number, the
authors have shown the existence of three different physical
mechanisms leading to chaotic flows by a succession of
bifurcation points. All the configurations considered show
a base flow which consists of two symmetric counter-rotat-
ing rolls around an ascending thermal plume arising above
the line source.

A first scenario is found for aspect ratio equal to 1 and
depths of immersion smaller than the width. The underly-
ing mechanism of the onset of instabilities is the destabili-
zation of a significant mass of fluid below the line source.
The periodic flow appears through a supercritical Hopf
bifurcation characterized by a frequency proportional to
the height of the fluid under the source. A second scenario
is found only if the aspect ratio A 6 1 and if the layer of
fluid below the source is small enough and the plume
reaches the top wall. In this case, the plume is bounded
below by a stable conducting layer of fluid. The flow under-
goes a supercritical Hopf bifurcation leading to a periodic
motion with a high fundamental frequency. This motion is
followed by a quasi-periodic regime before a weakly turbu-
lent regime arises via an intermittent route to chaos. A
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third scenario is found in cavities of aspect ratio A = 2 and
for depths of immersion of the source greater than the
width. The symmetric flow undergoes a pitchfork bifurca-
tion leading to a deflection of the plume towards one
vertical wall. The symmetry breaking is driven by the desta-
bilization of an upper unstable layer of motionless fluid
above the plume. An increase of the Rayleigh number leads
to a periodic motion with a very low frequency via a sub-
critical Hopf bifurcation.

Two-dimensional convection flows have also been inves-
tigated numerically by Zia et al. [15] in a differentially
heated cavity containing a heat source above the bottom
surface of the cavity, and by Horvat et al. [16] for a low-vis-
cosity flow with zero thermal diffusivity. In this paper, our
approach is close to the one used by Desrayaud and Lau-
riat [14]. The difference lies in taking into account large
temperature differences between the source and the vertical
walls of the cavity. Because of the large density variation
involved, the usual Boussinesq approximations are no
longer valid and the compressible Naviers–Stokes equa-
tions have to be considered. However, since these equations
contain acoustic waves, the numerical stability criterion is
too much restrictive because of the wide disparity between
the time scales associated with convection and the propaga-
tion of acoustic waves. A solution to this problem consists
of the filtering of these waves using the low Mach approx-
imation of the Navier–Stokes equations [18]. This model
decouples pressure fluctuations from density fluctuations
making the resulting equations similar to the incompress-
ible case. In particular, acoustic waves are excluded
whereas gravity waves may still occur.

The Low-Mach Number equations (LMN) have been
used in many studies to investigate the effects of large tem-
perature variations in natural convection flows [19–21] and
also for near-critical fluids [22,23]. In the present study, the
LMN equations supplemented by the state equation for
ideal gases are used to investigate the flows in 2D-cavities
of aspect ratio A = 1,2,4. The plumes arise from a hot
square solid immersed in the vertical centerline of the cav-
ity which have isothermal vertical walls and insulated hor-
izontal walls. This paper is organized as follows. The next
section recalls the governing equations and the numerical
method. Section 3 is devoted to results obtained in steady
and oscillatory regimes for each configuration. The paper
ends with a summary of major conclusions.

2. Problem formulation

2.1. Governing equations

Consider a two-dimensional cavity of width L and
height H filled with a viscous fluid. The gravity is directed
downwards the y-axis. A solid body of square section is
immersed on the vertical centerline of the cavity close to
the bottom wall. Its dimensions in horizontal and vertical
directions are lx = ly = L/8. The body is considered as a
heating source with a uniform temperature Th. The vertical
walls of the cavity are maintained at the cold temperature
Tc (Tc < Th), while the top and the bottom walls are ther-
mally insulated. The working fluid is air which is initially
at a uniform temperature T0 = (Th + Tc)/2 and pressure
P0. It is assumed to be an ideal gas with constant specific
heats cp and cv of ratio c = 1.4. Its dynamic viscosity l
and thermal conductivity j are allowed to depend on
temperature.

Since we are primarily interested in flows induced by
large temperature differences, we have adopted the low
Mach number model described by Chenoweth and Pao-
lucci [19] and used later by Le Quéré [20]. In this model,
the complete Naviers–Stokes equations are expanded in
powers of the small parameter M2 (M is the Mach num-
ber). Paolucci [18] showed that the pressure may be divided
into two parts: a mean thermodynamic pressure which
depends only on time and a dynamic pressure not coupled
with the density fluctuations preventing the propagation of
the acoustic waves. The equations are made dimensionless
by scaling length, time, temperature, pressure and velocity
by reference quantities: L0 = L, t0 = L0/V0, T0 = (Th +
Tc)/2, P 0 ¼ q0V 2

0, V 0 ¼ l0

q0L0

ffiffiffiffiffiffi
Ra
p

. The thermophysical prop-

erties (density, dynamic viscosity, thermal conductivity,
thermal diffusivity) are scaled by q0, l0, j0, a0 where the
subscript 0 denotes values at the reference temperature
T0. Finally, according to Le Quéré et al. [20], the governing
equations in the dimensionless form are

oq
ot
þr � ðqVÞ ¼ 0 ð1Þ

q
oV

ot
þ ðV � rÞV

� �
¼ �rPþ ðRaÞ�1=2r � ��s� Pr�1 q� 1

2e
y

ð2Þ

q
oT
ot
þ ðV � rÞT

� �
¼ 1

Pr Ra1=2
r � ðjrT Þ þ c� 1

c
dP
dt

ð3Þ

P ¼ qT ð4Þ

Note that we have five equations for six unknowns q, u, v,
T, P and P . The necessary additional equation is given by
calculating the term dP=dt. Mass conservation equation
(1), combined with energy equation (3) and state equation
(4) permit to write the divergence of velocity in the form
given by Eq. (5). When integrated over the fluid domain,
this equation leads to Eq. (6) for dP=dt

r � V ¼ r � ðjrT Þ
Pr Ra1=2P

� 1

cP

dP
dt

ð5Þ

dP
dt
¼ c

A Pr Ra1=2

Z
C

j
oT
on

dS ð6Þ

V is the velocity vector of components (u,v), ��s ¼
lðrV þ ðrVÞt � 2

3
ðrVÞI the viscous stress tensor, P ¼

ðP � P þ q0gyÞ=q0V 2
0 the reduced pressure, P ðtÞ the mean

thermodynamic pressure, e = DT/2T0 the normalized tem-
perature difference where DT is the temperature difference
(Th � Tc) between the obstacle and the sidewalls and
A = H/L0 the aspect ratio. The independent dimensionless
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parameters are the Prandtl number and the Rayleigh num-
ber defined at the reference temperature T0

Pr ¼ l0

q0a0

; Ra ¼ 2q0egL3
0=l0a0 ð7Þ

where a0 = j0/q0cp is the thermal diffusivity. The system of
equations is closed by Sutherland’s law for the dynamic vis-
cosity l

lðT Þ ¼ T 3=2 1þ Sl

T þ Sl
ð8Þ

and since the Prandtl number is assumed constant in this
study, the thermal conductivity j is given by

jðT Þ ¼ lðT Þ ð9Þ

where Sl = 0.368 for e < 0.6 and T0 2 [210 K, 673 K]. The
computational domain is defined for a rectangular cavity
X = [0, 1] · [0, A]. At the boundaries, the no-slip conditions
for velocities are coupled to temperature conditions

T ¼ 1� e at x ¼ 0

T ¼ 1� e at x ¼ 1

T ¼ 1þ e on the obstacle
oT
on ¼ 0 at y ¼ 0 and y ¼ H=L

8>>><
>>>:

ð10Þ
2.2. Numerical modelling

The governing equations are solved numerically by a
finite-volume scheme using the usual staggered arrange-
ment on a non-uniform grid. The resulting mesh leads to
a grid layout strongly refined close to the source and the
walls of the cavity. The time derivative is approximated
using a second order backward Euler scheme in which
the diffusive and viscous linear terms are implicitly treated
while the convective nonlinear terms are explicitly treated
using an Adams–Bashforth extrapolation. For instance,
the fully time discretized formulations for the energy equa-
tion read

qn 3T nþ1 � 4T n þ T n�1

2Dt
þ ðV :rT Þ�

� �

¼ Ra�1=2rðj�rT nþ1Þ þ c� 1

c

� �
dP �

dt

where * refers to Adams–Bashforth extrapolation (f * =
2f n � f n�1).

A similar approach is then applied to the momentum
equations. This process results in Helmholtz-type equa-
tions for T n+1, un+1 and vn+1

ðrT I�r � j�rÞT nþ1 ¼ Sn;n�1
T ð11Þ

ðrV I�r � lnþ1rÞunþ1 ¼ �
ffiffiffiffiffiffi
Ra
p

rPnþ1 þ Sn;n�1
u ð12Þ

ðrV I�r:lnþ1rÞvnþ1 ¼ �
ffiffiffiffiffiffi
Ra
p

rPnþ1 þ Sn;n�1
v ð13Þ

r � V ¼ Sn;n�1
D ð14Þ
where I is the identity tensor, rT ¼ 3qnPr
ffiffiffiffiffiffi
Ra
p

=2Dt and
rV ¼ 3qnþ1

ffiffiffiffiffiffi
Ra
p

=2Dt. Sn;n�1
T , Sn;n�1

u , Sn;n�1
v and Sn;n�1

D are
source terms depending on time steps n and n � 1.

2.3. Time marching procedure

Assuming the flow is known at time levels (0, . . . ,n), the
different stages to compute the flow at (n + 1) are
respectively:

• Determination of the temperature field from (3) using
extrapolated values of j* and ðdP=dtÞ�:

• Calculation of the new physical properties jn+1 and
ln+1.

• Calculation of P nþ1 using mass conservation (see [20])
and of ðdP=dtÞnþ1 using Eq. (6). The divergence of veloc-
ity Snþ1

D in Eq. (13) can then be computed at time level
(n + 1).

• Calculation of qn+1 by using Eq. (4).
• Resolution of the momentum equations by using a ‘‘pro-

jection’’ method derived from the classical projection
methods for incompressible flows [24].
• Prediction. Computation of a provisional velocity field
satisfying the following equation over the computational
domain X of boundary C:

ðrV I�r � lnþ1rÞV� ¼ �Ra1=2rPn þ Sn;n�1 ð15Þ
• Projection. Computation of an auxiliary function /

satisfying
qnþ1ðVnþ1 � V�Þ ¼ rU in X

r � Vnþ1 ¼ Dn;n�1 in X

Vnþ1 � n ¼ 0 on C

8><
>: ð16Þ

This leads to the resolution of the diffusive problem

r � ð 1
qnþ1rUÞ ¼ Sn;n�1

D �r � V� in X
oU
on ¼ 0 on C

(
ð17Þ

The resolution of the Poisson equation (16) is done
through a multigrid acceleration procedure. The veloc-
ity V and the pressure P are then calculated from the
expressions

Vnþ1 ¼ Vn þ 1

qnþ1
rU ð18Þ

Pnþ1 ¼ Pn � 3U
2DT

ð19Þ
2.4. Validation of the code

The code has been tested in some relevant benchmark
cases corresponding to the non-Boussinesq convection in
a differentially heated square cavity [29]. Tests have been
carried out for a normalized temperature difference
e = 0.6 and for Ra = 106 and 107. For these values of the
parameters, the flow tends to a steady state. Two cases
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have been studied, the first for constant fluid properties, the
second using the Sutherland’s law for viscosity and a con-
stant Prandtl number. Results obtained by our code reveal
a very good agreement with the reference solutions result-
ing from this benchmark.

The present study is devoted to investigate unsteady
flows generated by a square source located in the mid-plane
of cavities with aspect ratios A = 1,2,4. The influence of
the grid size has been analyzed by testing several non-uni-
form meshes. For all geometries, the grid layout was
refined close to the walls and around the heat source by
using Chebychev collocation points in both horizontal
and vertical directions. After a number of trial numerical
experiments, a (296 · 296) grid for the square cavity was
considered as a good compromise between stability or
accuracy requirements on one hand and computational
costs on the other hand.

The influence of the time step has also been considered.
Different values were tested by comparing the solutions in
terms of amplitude and frequency in periodic regimes.
When considering both these aspects as well as the relatively
long computer simulations times involved, it was finally
decided to use a time step Dt = 0.004 for values of Ra close
to the first bifurcation point (Ra < 7 · 106 in square cavity).
We have verified that decreasing the time step to Dt = 0.002
gave a decrease of amplitude of 4% and an increase of fre-
quency of 1.5% for Ra = 6.8 · 106. When decreasing more
the time step from Dt = 0.002–5 · 10�4, the results in terms
of frequency and amplitude remain constant.

For the rectangular cavity of aspect ratio A = (H/L) =
4, a similar study leads us to take a (296 · 440) non-uni-
form grid. Using this mesh, the flow was found to be peri-
odic at Ra between 1.2 · 104 and 1.3 · 104. In view of the
moderate values of the Rayleigh number at which insta-
bilities occurs, time steps used are Dt = 0.01 for
Ra < 1.4 · 104. For the cavity with aspect ratio A = 2, the
computations have been performed with a (296 · 296)
non-uniform grid and time steps varying from 0.007 to
0.004 for values of Ra within the range [4 · 104, 1.5 · 106].

2.5. Methodology

The numerical experiments were carried out as follows.
For each considered value of the aspect ratio, the cavity is
filled with a fluid at uniform reference temperature T0 =
(Th + Tc)/2. At instant t = 0, the body and the lateral walls
are set to their final temperatures Th and Tc and a first
computation is performed for a sufficiently low value of
the Rayleigh number in order to reach a steady flow. This
steady state is in turn used as an initial condition for a sub-
sequent computation at a larger value of Ra and the proce-
dure is resumed for increasing values of the Rayleigh
number. When the flow becomes unsteady, its temporal
characteristics are analyzed from time series of temperature
and velocity values at selected sampling points.

It must be noticed that all the studied configurations
present a reflection symmetry with respect to the vertical
centerline of the cavity. The bifurcations which occur when
the Rayleigh number increases will thus be analyzed
through this symmetry breaking. When it was found neces-
sary, a symmetric base flow (possibly unstable) has been
computed by considering the half of the domain and
imposing symmetric boundary conditions on the central
vertical axis.

3. Results and discussion

The parameters governing the plume formation are the
Rayleigh number, the aspect ratio A, the location of the
heating source, the normalized temperature difference e
and the initial conditions. A quite extensive analysis would
be needed to cover all the possible effects of each parame-
ter. In this study, the following values were maintained
constant for all the configurations. The source center is
located at position Ms(0.5,0.25) and the normalized tem-
perature difference is e = 0.2. This value corresponds to
an actual temperature difference DT = 120 K between the
source and the vertical walls and to a reference temperature
T0 = (Th + Tc)/2 = 300 K. This temperature difference is
much larger than the commonly admitted limits of validity
for the Boussinesq approximation which is about 30 K for
air in the standard atmospheric conditions. To validate this
point, Boussinesq computations reported in Section 3.2.2
show that the nature of the first bifurcation is strongly
affected by non-Boussinesq effects. However, we did not
make an extensive study of larger values of � though the
benchmark for the differentially heated cavity was com-
puted for � = 0.6.

In all the considered configurations, the expected base
flow consists first of a hot fluid rising above the heating
source in the form of an ascending thermal plume. In order
to satisfy the zero mass flux condition, the flow then
returns to the source forming two counter-rotating recircu-
lations movements. In addition, secondary flows may occur
depending on the aspect ratio as will be shown later.

3.1. Cavity A = 1

3.1.1. Symmetric steady flow

Flow structure: For sufficiently low values of Ra, the
flow reaches an asymptotic steady state exhibiting a sym-
metric motion about the vertical centerline of the cavity.
Typical velocity fields and isotherms are displayed in
Fig. 1 for Ra = 5 · 106. The flow pattern is characterized
by a primary flow which consists of two counter-rotating
recirculations flows delimited by a vertical thermal plume.
In this primary flow (zone A in Fig. 1(a) and (b)), the hot
fluid rises above the source until it reaches the top wall,
then moves outwards along the horizontal wall before
moving downwards along the sidewalls inducing boundary
layers in which it is cooled. When it arrives at the bottom
wall, the fluid returns to the source, almost horizontally
to it. The core of the primary flow is stratified in its lower
part (zone B in Fig. 1(a) and (b)) and contains two small



Fig. 1. (a, b) Velocity field and isotherms at steady state in the square cavity for Ra = 5.0 · 106, (c, d) the corresponding horizontal profiles of vertical
velocity and temperature.
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eddies, one on each side of the plume, in its upper part
(zone C in Fig. 1(a) and (b)). The primary flow delimits a
fluid layer below the source which is almost at rest and uni-
form in temperature. Moreover, the primary flow is distin-
guished by marked sheared zones located in the plume and
the boundary layers. These shear layers characterized by
large velocity gradients are clearly visible in the horizontal
profiles of temperature and vertical velocity plotted for var-
ious heights above the source (see Fig. 1(c) and (d)).
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Fig. 2. (a) Time evolutions of the horizontal velocity at points M1(0.5,0.6
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3.1.2. Unsteady periodic flow

The flow becomes periodic beyond a critical value
of the Rayleigh number located in the range
[5.5 · 106, 6 · 106]. For instance, Fig. 2(a) shows the time
evolutions of the horizontal component u of the velocity
for Ra = 6.8 · 106 at two points on the vertical centerline.
These signals are clearly periodic and a Fourier analysis
yields a fundamental frequency f1 = 0.197 with its two first
odd harmonics (Fig. 2(b)). This behaviour is related to the
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breaking of the reflection symmetry associated with the
bifurcation.

Moreover, computations not reported here have shown
that the closer the Rayleigh number is to its critical value,
the longer is the time for attaining the asymptotic flow.
This suggests that the onset of unsteady solutions is due
to a supercritical Hopf bifurcation. This is confirmed by
the fact that no hysteresis effect could be found when the
Rayleigh number was decreased from Ra = 6 · 106 to
Ra = 5 · 106.

Flow structure: This transition is characterized by a
breaking of the reflection symmetry which induces a sway-
ing motion of the thermal plume. To illustrate this behav-
iour, results for Ra = 6.8 · 106 are presented. Typical
instantaneous velocity fields are shown in Fig. 3(b)–(f)
evenly distributed over one time period. From these plots,
it can be seen that the upper part of the rising plume oscil-
lates horizontally once to the right once to the left side of
the cavity. During one period, the secondary upper rolls
inside the primary flow (see Section 3.1.1), break into two
smaller counter-rotating rolls and afterwards merge again
(see Fig. 3(b), (d) and (f)). The fluid layer below the source
remains almost at rest although the convective motion
extends slightly to the bottom of the cavity. Time averaged
velocity field showing a symmetric pattern about the verti-
cal centerline, is plotted in Fig. 3(a) by integrating instan-
taneous fields over a sufficiently long time (400 non-
dimensional time units).

Base flow and flow fluctuations: In order to examine the
instability mechanisms, we have first calculated the sym-
metric unstable base flow by imposing symmetry boundary
conditions on the vertical centerline and then computed the
temporal fluctuations with respect to this base flow by sub-
Fig. 3. (a) Mean velocity field, (b–f) instantaneous fields a
tracting the symmetric base solutions from instantaneous
fields. Before considering the fluctuations, it may be
noticed that the symmetric unstable base flow is slightly
different from the symmetric time averaged flow.

The spatial distributions of the fluctuations are dis-
played in Fig. 4 for Ra = 6.8 · 106 at eight instants over
one oscillation period. The temperature field corresponding
to the base solution is also presented in Fig. 4(e). These
plots indicate that the maximum of disturbances are con-
fined within the plume and to a lesser extent in the bound-
ary layers and the core of the primary flow. The
disturbances consist of structures of alternate sign distrib-
uted simultaneously in the two halves of the cavity whereas
the layer of fluid below the source remains still stable.

The instabilities which occur in zones with large gradient
velocity with an inflection point may be identified with
shear instabilities and move along the primary flow direc-
tion. They first arise just above the source in the form of
detached blobs, then are convected in the plume until the
upper surface is reached. At the top wall, they spread out
horizontally to the left and to the right, then sink along
the sidewalls before vanishing when approaching the bot-
tom wall. The results for Ra = 6.8 · 106 indicate a range
of temperature fluctuations between [�0.03, +0.03] with
maximum values located within the plume.

3.2. Cavity A = 2

3.2.1. Symmetric steady flow

As usual, a symmetric steady flow is found for low
values of the Rayleigh number Ra, in this case for
Ra < 4.5 · 104. The main characteristics of the flow for
Ra = 4.0 · 104 are deduced from Fig. 5(a)–(c) in which
t five instants over one time period for Ra = 6.8 · 106.



(a) t = t0 (b) t = t0+T/8 (c) t = t0+T/4

(d) t = t0+3T/8 (e) base flow (f) t = t0+5T/8

(g) t = t0+3T/4 (h) t = t0+7T/8 (i) t = t0+T

Fig. 4. (a–d) and (f–i) Contours of temperature fluctuations at eight instants over one time period, (e) base flow temperature; thin (thick) lines for positive
(negative) values; variation range [�0.03,+0.03] for Ra = 6.8 · 106.
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typical velocity, streamlines and temperature fields are dis-
played, and from Fig. 5(d) and (e) in which horizontal pro-
files of temperature and vertical velocity Vy are plotted.

• The flow consists essentially of two symmetric recircula-
tion zones delimited by an ascending thermal plume
which extends up to the upper wall of the cavity
(Fig. 5(b)). There exists a small layer of quiet fluid just
below the heating source in which heat transfer is essen-
tially conductive.

• Unlike the square cavity case, no stratification may be
observed in the flow (Fig. 5(c)).

• The temperature and v profiles are typical of shear layers
developing along the sidewalls, at least in the upper part
(y > 1). These layers are rather thick because of the low
value of the considered Rayleigh number (see Fig. 5(d)
and (e)).
3.2.2. Asymmetric steady flow

When the Rayleigh number is increased beyond a criti-
cal value Rac, the steady symmetric flow looses its stability,
yielding an asymmetric steady solution. This transition
appears to be a pitchfork bifurcation whose threshold lies
at a critical value within the range [4.5 · 104, 5 · 104].

Flow structure: The structure of the bifurcated flow is
illustrated in Fig. 6(a)–(c) by velocity, temperature fields
and streamlines for Ra = 1.1 · 105. Two large recirculation
zones may still be observed, but they are no longer symmet-
ric with respect to the central axis. The main point is the
onset of the well known Coanda effect which induces a
deflection of the thermal plume towards one or the other
sidewall, depending on the initial conditions. To check this
point, the symmetric steady flow – within roundoff and
convergence errors – for Ra = 5 · 104 was flipped with
respect to the vertical centerline, yielding another initial
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Fig. 5. (a–c) Velocity field, streamlines and isotherms at steady state in cavity A = 2 for Ra = 4. · 104, (d) and (e) the corresponding temperature and
vertical velocity profiles.
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Fig. 6. Asymmetric steady state for Ra = 1.1 · 105 in cavity A = 2. Velocity field (a), temperature contours (b), streamlines (c, d) for two different initial
conditions.
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conditions for computations at Ra = 1.1 · 105. The asym-
metric steady state which was obtained for this value of
Ra can be deduced from the previous one by symmetry
(Fig. 6(d)).

From a more physical point of view, we would like to
emphasize two points:

• After a slight deviation towards one of the sidewalls, the
upper end of the thermal plume moves back up to the
center of the upper horizontal wall. When the Rayleigh
number is increased, this behaviour evolves towards a
configuration exhibiting a strongly deflection leading
to an instability process (see Section 3.2.3).

• The streamline pattern around the heating source shows
that the obstacle is fully included in the largest recircu-
lation zone (on the left side of the figure).

Nature of the bifurcation: By gradually decreasing the
Rayleigh number from Ra = 1.1 · 105 to Ra = 4 · 104,
no hysteresis effect could be evidenced which is a first
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indication that the bifurcation is probably supercritical. To
confirm this point, the steady asymmetric flow was com-
puted for a value Ra = 5.0 · 104 slightly above Rac and
the unstable symmetric steady base flow for this same value
of Ra was also computed. The comparison between the two
flows are displayed in Fig. 7, where contours of the temper-
ature difference and plots of the velocity differences are dis-
played. The resulting perturbation fields clearly exhibit a
symmetry opposed to the symmetry of the unstable base
flow as it could be expected since the bifurcation breaks
the natural symmetry of the problem. However, when Ra

is slightly increased and kept within the steady range, this
opposite symmetry is quickly no more visible. We believe
that this is due to the competition with another instability
mode similar to the mode that governs the first transition in
the cavity with aspect ratio A = 4. However, more work
would be needed to clarify this issue.

Finally, the variation of the squared amplitude of the
horizontal velocity u with respect to the Rayleigh number
Ra at point M3(0.5,0.56) is plotted in Fig. 8. The linear pat-
tern of the plot confirm the supercritical nature of the
pitchfork bifurcation and allows us to compute by linear
extrapolation an estimation of the critical value Rac of
the Rayleigh number as Rac = 4.8 · 104.

Comparison with the Boussinesq case: The goal of this
section is to evidence the necessity of considering non-
Boussinesq effects. For this purpose, calculations under
the Boussinesq approximation have also been carried out
in the A = 2 configuration. Starting from Ra = 4 · 104

and gradually increasing the Rayleigh number, the first
bifurcation point corresponding to the transition from a
symmetric steady state to an asymmetric steady state
appears at a critical Rayleigh number in the range
7.0 · 104 < Rac < 7.5 · 104, therefore yielding a critical
value larger than in the non-Boussinesq case. Probably
more important is the onset of hysteresis effects in the vicin-
ity of this point, revealing the subcritical nature of the tran-
sition unlike in the non-Boussinesq case. To illustrate this
point, a symmetry indicator IT for the temperature (equal
Fig. 7. (a) Temperature field at asymmetric steady state, (b) the symm
(e) v-disturbances for Ra = 5.0 · 104 in cavity A = 2, thin (thick) lines for pos
to zero when the temperature field is perfectly symmetric
with respect to the vertical centerline) was defined as

IT ¼
Z Z

X
ðT ðx; yÞ � T ð1� x; yÞÞ2 dxdy

The variations of this indicator for increasing Ra and for
decreasing Ra are displayed in Fig. 9. Two main features
are observed:

• When Ra is increased, the symmetric steady solution
jumps on a branch with finite amplitude consisting in
an asymmetric solution, confirming the subcritical nat-
ure of the bifurcation.

• When Ra is decreased from a point on the finite ampli-
tude branch, the asymmetric solution persists for values
of Ra down to 6 · 104, yielding multiple solutions in a
finite range of Ra.

These results clearly show that even for relatively low
values of �, taking into account non-Boussinesq effects
may be necessary.
etric base flow, (c) temperature disturbances, (d) u-disturbances and
itive (negative) fluctuations.
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3.2.3. Unsteady periodic flow

The asymmetric steady solutions persist for values of Ra

up to 1.1 · 106. Beyond this value, the flow becomes
periodic. For instance, Fig. 10(a) shows time evolution of
the horizontal component u at the sampling point
M3(0.5,0.56) for Ra = 1.3 · 106. It turns out that the signal
is monochromatic. This is confirmed by its power spectrum
which exhibits a fundamental frequency f1 = 0.145 and its
first and second harmonics, as it could be expected due
to the asymmetric nature of the base flow (see Fig. 10(b)).

When decreasing the Rayleigh number from Ra = 1.3 ·
106 to Ra = 1.1 · 106, the flow reverts to a steady and
asymmetric state indicating a supercritical Hopf bifur-
cation.

Flow structure: For this same Rayleigh number Ra =
1.3 · 106, typical instantaneous velocity, streamlines and
temperature fields are displayed in Fig. 11(a)–(c). It should
be pointed out that the thermal plume remains deflected
towards one opposite vertical wall and its oscillatory
motion develops around a deflected mean position. In
addition, it can be noticed that the thermal plume behaves
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Fig. 10. (a) Time evolutions of the horizontal component u at point M3(0
like an oblique jet impacting on a vertical wall. After the
plume impacts on the right wall, the flow is distributed
on each side of the impact. One part of the flow moves
towards the upper wall inducing a secondary small eddy
in the right top corner of the cavity while the other part
moves down along the vertical wall. These two flows return
then to the source, forming two primary recirculation
zones, one of them including the heating source.

Temperature and vertical velocity profiles at different
heights above the source are plotted in Fig. 11(d) and (e).
These plots clearly exhibit the development of shear layers
in the plume and near the top and vertical walls. This phe-
nomenon is simply the continuation of the trend that was
observed in the previous sections, the shear layers becom-
ing thinner and thinner.

Mean flow and fluctuations: The time averaged flow for
this same Rayleigh number was computed by integrating
instantaneous solutions over a sufficiently long time. The
structure of this mean flow is similar to that one of the
instantaneous flow. In particular, it exhibits a thermal
plume impacting on one lateral wall (see Fig. 12(a)).

The fluctuating fields were computed by subtracting the
mean field from instantaneous fields. Spatial distributions
of these fluctuations are displayed in Fig. 12 at four
instants evenly spaced over one time period. The tempera-
ture fluctuations are essentially located within the plume,
near the top wall and along the vertical right wall towards
which the plume is deviated. The disturbances consist of
positive and negative elongated structures distributed in
the shear layers. The maximum amplitude of these fluctua-
tions varying in the range [�0.01,0.01] are located within
the plume at positions close to the source. Moreover, one
can notice that the left recirculation zone of the primary
flow is more stable than the right one. The fluctuations fill
the full domain of the right recirculation roll, whereas they
are essentially distributed at the top wall and along the
plume in the largest left one.

Instability mechanisms: Examination of the instanta-
neous streamlines suggests that the instability arises from
the impact of the thermal plume on the sidewall. Actually,
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.5,0.56), (b) power spectrum of u for Ra = 1.3 · 106 in cavity A = 2.
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Fig. 11. (a–c) Velocity field, streamlines and isotherms at periodic state in cavity A = 2, (d, e) the corresponding temperature and vertical velocity profiles
for Ra = 1.3 · 106.

Fig. 12. (a) Mean temperature field, (b–e) temperature fluctuations for Ra = 1.3 · 106 at four equally spaced times; thin (thick) lines for positive (negative)
fluctuations, variation range [�0.01,+0.01], cavity A = 2.
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we have checked that, in steady asymmetric case, the
deflection of the plume grows when the Rayleigh number
increases. This phenomenon persists until the plume
reaches the wall. The plume then splits in two parts as
described in the previous section, leading to the instability
process.
3.3. Cavity A = 4

3.3.1. Symmetric steady flow

An asymptotic symmetric steady flow is found for Ray-
leigh numbers lower than Ra = 1.3 · 104. Typical velocity
and temperature fields are displayed for Ra = 1.2 · 104 in
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Fig. 13(a) and (b). As seen in the previous cases, two sym-
metric recirculation flows delimited by an ascending ther-
mal plume can be observed. However, the plume in this
case, does not extend to the top wall and a separated shear
layers regime is no longer observed. Horizontal profiles of
temperature and vertical velocity at three vertical positions
above the source for the same Rayleigh number are dis-
played in Fig. 13(c) and (d). These profiles are similar to
those of Poiseuille-type flows except in the upper part of
the cavity where the fluid is at rest.

3.3.2. Unsteady periodic motion

When increasing the Rayleigh number beyond Ra =
1.2 · 104, the flow looses its stability. The transition occurs
at a critical value Rac in the range [1.2 · 104, 1.3 · 104]. As
it could be expected because of the larger distance between
the horizontal walls, the flow becomes unstable for lower
values of the Rayleigh number than in the previous cases
A = 1 and A = 2. Time evolutions of the horizontal com-
ponent u indicate that the flow undergoes a transition to
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Fig. 13. (a, b) Velocity field and isotherms at steady state in cavity A = 4,
Ra = 1.2 · 104.
a periodic state. The power spectrum of the horizontal
velocity u indicates a very low value (f1 = 0.05) of the fre-
quency and the absence of any harmonics (see Fig. 14).

Flow structure: Typical instantaneous velocity and tem-
perature fields are displayed for this same Rayleigh number
in Fig. 15(a) and (b) and Fig. 15(f) and (g) at two instants
taken over one time period. We can see that the swaying
motion of the plume is of sinusoidal type as in the case
of a freely rising plume. Because of the low Rayleigh num-
ber, the amplitudes of oscillations are very weak.

Mean and base flow: The time averaged temperature and
velocity fields are displayed in Fig. 15(c) and (h). Notewor-
thy is the fact that the mean velocity field exhibits a slightly
asymmetric behaviour in the middle part of the cavity
whereas a possible asymmetry of the temperature field is
barely visible.

To clarify this point, it was found necessary to compute
the unstable symmetric steady base flow and to examine the
differences between this base flow and the time averaged
flow. These differences respectively are displayed in
(b)
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(c, d) the corresponding temperature and vertical velocity profiles for



-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1600 1650 1700 1750 1800 1850

u

Time

Ra=1.4×103 ; A=4
y = 1.23
y = 3.05

(a)

0.0001

0.001

0.01

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3

u

frequency

Ra=1.4×104  ; A=4
f1

(b)

Fig. 14. (a) Time evolutions of the horizontal velocity at points M4(0.5,1.23) and M5(0.5,3.05), (b) power spectrum of the u-velocity at point M(0.5,2.15).

Fig. 15. (a, b) Instantaneous velocity fields at instants t0 and t0 + T/2, (c) mean velocity field, (d) difference between the mean and base flow, (e) base flow
velocity, (f, g) instantaneous temperature fields, (h) mean temperature, (i) difference between the mean and base flow in the range [�0.007,0.004], (j) base
flow temperature; Ra = 1.4 · 104 and cavity A = 4.
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Fig. 15(d) for the velocity field and in Fig. 15(i) for the tem-
perature field. The velocity field exhibits a slight asymmet-
ric behaviour whereas no asymmetry is visible for the
temperature. In Fig. 16(a) and (b) horizontal profiles of
the u component are plotted at two vertical positions above
the heating source. For locations sufficiently close to the
source, u-profile of the mean flow shows an asymmetric
behaviour with respect to the vertical centerline by compar-
ison with the symmetric base solution. As one moves away
from the source, the difference between the base solution
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Fig. 17. Temperature fluctuations (at the top row) and u fluctuations (below) f
for positive (negative) fluctuations. Variation range for temperature fluctuation
cavity A = 4.
and the average field vanishes (Fig. 16(b)). Concerning
the vertical component v of the mean flow, the horizontal
profiles (not shown here) remain symmetric and very close
to those of the base flow whatever the height.

Flow fluctuations: For the purpose of comparison with
the previous cases A = 1 and A = 2, spatial distributions
of temperature and velocity fluctuations with respect to
the symmetric base solution are displayed in Fig. 17 for
Ra = 1.4 · 104 at eight instants over one time period. The
figures show that the instabilities patterns are substantially
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.85, (b) at y = 1.23, comparison between the mean and base flows.

or Ra = 1.4 · 104 at eight instants with a time step = T/8; thin (thick) lines
s [�0.03,+0.025], variation range for u velocity fluctuations [�0.1,+0.11],
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different from those observed in the previous cases. Actu-
ally, the disturbances grow and spread out over the full
flow domain. In addition, they have a preferred downward
propagation direction in spite of the flow direction in the
middle part of the cavity. Temperature and vertical velocity
fluctuations (not shown here) are organized as large cells
constituted of pairs of superimposed positive and negative
perturbations occupying the whole width of the cavity.
Those of the horizontal velocity are structured as single
‘‘circular’’ cells of positive and negative values alternately
superimposed in the vertical direction. Supported by
dynamical sequences, it was found that the disturbances
originate from the unstable layer of fluid at the top of
the cavity, then move down in the vertical direction until
they reach the bottom wall. Their periodic motion is com-
parable with a wave whose propagation speed is uniform
and directed downwards.

The physical mechanism leading to this type of instabil-
ity is different from that one found in the square cavity
implying shear layers with large velocity gradient. Here,
the absence of sheared zones suggests that only the buoy-
ancy forces are responsible for the disturbance develop-
ment. This type of instability has been demonstrated to
be due to nonlinear density variation with temperature
[25], this is why large disturbances are located in the
high-density region. The buoyancy forces which act down-
ward near the cold vertical walls where the fluid is denser
cause strong downward disturbances flow that explains a
preferred direction of disturbances propagation: from top
to bottom.

This second type of instability behaves like the so-called
‘buoyancy-driven instabilities’ which were already reported
in previous works [26–28] for non-Boussinesq mixed con-
vection in a tall vertical channel. The recent investigations
carried out by Suslov [28] show a stability diagram for a
wide range of Grashof and Reynolds numbers indicating
the influence of the governing parameters (Gr, Re) on the
appearance of the two distinct modes of instabilities: shear
and buoyancy-driven instabilities.

4. Conclusions

In this paper, natural convection flows in a rectangular
two-dimensional cavity have been numerically studied.
The flows under consideration are generated by large tem-
perature differences between a square solid obstacle kept at
a constant hot temperature and walls kept at a constant
cold temperature. In order to avoid too stringent stability
criterion in the numerics, the acoustic waves have been fil-
tered out by considering the compressible Navier–Stokes
equations under the low Mach number approximation.

Only moderate values of the Rayleigh number have been
considered. More specifically, we were interested in the first
bifurcation undergone by the flow, and possibly the sec-
ond, when the Rayleigh number is increased. An important
point which was considered within this context, is that
there exists a natural reflection symmetry with respect to
the mid vertical axis for this problem, whatever the value
of the aspect ratio A.

The main results may be summarized as follows:

• For sufficiently low values of the Rayleigh number, a
steady symmetric flow is obtained whatever the value
of the aspect ratio A. This flow consists of two large
recirculation cells, one in each half of the cavity, which
isolate a quiet fluid layer, uniform in temperature, below
the heating source.

• For sufficiently large values of the Rayleigh number, the
flow becomes unsteady in a periodic manner. However,
if the transition to unsteadiness occurs directly from the
previous symmetric steady flow through a supercritical
Hopf bifurcation for A = 1 and A = 4, it is not the case
for A = 2 where the flow undergoes firstly a supercritical
pitchfork bifurcation leading to an asymmetric steady
state deflected towards one of the sidewalls. This asym-
metric state then undergoes a supercritical Hopf bifurca-
tion leading to an oscillatory motion around a deflected
mean flow.

• The instabilities which occur through the different Hopf
bifurcations are not all of the same type, depending on
the aspect ratio A. For A = 1 and A = 2, they are shear
layer instabilities, whereas for A = 4 they are bulk insta-
bilities which were referred by Suslov as buoyancy insta-
bilities. In our case, they take the form of travelling
waves which fill the whole cavity and propagate down-
wards with a well defined phase velocity.

• All the bifurcations that were encountered broke the
natural symmetry of the problem.

In these computations, the only parameter to be varied,
apart from the Rayleigh number, was the aspect ratio A.
Along these lines, computations will be carried out in future
considering larger values of the aspect ratio for which a
wider range of instabilities may be expected. In particular,
the results that were obtained by Weisman et al. [30] suggest
that subcritical bifurcation could be found.

However, it is clear that the influence of other parameters
have to be considered in future works. In particular, increas-
ing the temperature difference, i.e. the parameter �, would
likely lead to different flow structures and instabilities.
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